Romero-Aznar, Victoria; Lais Picinini Freitas; Oswaldo Goncalves Cruz; Aaron A. King and Mercedes Pascual

The spread of dengue and other arboviruses constitutes an expanding global health threat. The extensive heterogeneity in population distribution and potential complexity of movement in megacities of low and middle-income countries challenges predictive modeling, even as its importance to disease spread is clearer than ever. Using surveillance data at fine resolution from Rio de Janeiro, we document a scale-invariant pattern in the size of successive epidemics following DENV4 emergence. Using surveillance data at fine resolution following the emergence of the DENV4 dengue serotype in Rio de Janeiro, we document a pattern in the size of successive epidemics that is invariant to the scale of spatial aggregation. This pattern emerges from the combined effect of herd immunity and seasonal transmission, and is strongly driven by variation in population density at sub-kilometer scales. It is apparent only when the landscape is stratified by population density and not by spatial proximity as has been common practice. Models that exploit this emergent simplicity should afford improved predictions of the local size of successive epidemic waves. Population density can influence the dynamics of emerging infections, but the specific effects at a local (within-city) level are not well understood. Here, the authors investigate the influence of population density on dynamics of dengue outbreaks in Rio de Janeiro and propose that this variable holds the key to how space should be aggregated.